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SLOW M O T I O N  OF A G R A N U L A R  LAYER ON AN I N C L I N E D  P L A N E  

Yu. A. Berezin and L. A. Spodareva UDC 532.526 

The shape of the free surface of a layer of granular material moving on an inclined plane is 
studied on the basis of a model of a non-Newtonian fluid with a nonlinear relation between the 
stress tensor and the shear rate of the flow. For small but finite elevations of the free surface, 
the governing equations are reduced to a quasilinear Burgers equation. Results of a numerical 
solution are presented for the case of arbitrary elevations. 

Granular media consisting of a large number of solid particles are abundant in nature and practical 
human activity: avalanches, sand storms, mudflows, powder metallurgy, chemical technology, storage and 
transportation of grain. Therefore, studies of the character of granular flows are important for both bs 
science and practical applications. It is commonly believed that these materials can be modeled adequately 
using the concepts and methods of continuum mechanics. Two different limiting flow regimes are usually 
distinguished for these media: a quasistatic regime, which corresponds to large densities and small shear rates, 
and an inertial regime, which corresponds to smaller densities and larger shear rates. In the first regime, all 
granules are always in close contact with their nearest neighbors and their motion is determined by Coulomb 
friction. In the second regime, there are always gaps between the granules and the interaction is conditioned 
by inelastic collisions. A description of the inertial regime is generally based on the laws of conservation of 
mass, momentum, and sometimes energy of random motion of granules (see, for example, [1]). 

Careful and well-documented experiments [2] showed that the shear stress in inertial granular shear 
flows is proportional to the shear rate squared, in contrast to the ordinary viscous (Newtonian) fluid, for 
which this relationship is linear. Therefore, it is reasonable to regard granular materials as a non-Newtonian 
fluid (medium) with a nonlinear relationship between the stress tensor and shear rate of the flow. 

We consider a layer of granular material with a free surface that moves on a rough plane. We study 
this two-dimensional flow within the framework of the non-Newtonian fluid model. Having directed the x axis 
along the inclined plane and the y axis across the plane, we write the governing equations as 

du Op Oa~ Orxy 
P d-~ = -0"~ + pgs ina  + ~ + c~y ' 

dv Op c9%z Ocryy Ou c3v 

= Ty ay '   +Ty = ~  

(1) 

We make the following assumptions: 
(1) the longitudinal scale L0 is much larger than the transverse scale H0, i.e., e = Ho/Lo << 1; 
(2) the transverse velocity v is much smaller than the longitudinal velocity u, i.e., v << u, but 0v/0y ~ 

Ou/Ox; 
(3) the flow is slow, which is wild for some natural granular flows that slip down an inclined plane, for 

instance, avalanches and glaciers, and the acceleration dr~dr can be ignored [3]; 
(4) oqo'z~/oqx << oqrzy/cgy in the first equation; 
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(5) Orvz/Oz and O~rvv/O v << Op/Oy and P9 cos ~ in the second equation; 
(6) the shear stress rzv = rvz is proportional to IOu/Oul"-lOu/Ov. 

The exponent n = 2 corresponds to a granular medium in the inertial regime, as in experiments [2], n = 1/2 
refers to a pseudoplastic medium, and n = 1 corresponds to a non-Newtonian viscous liquid. 

Under these assumptions, system (1) takes the form 

0 2 _ & , ) /  op &, ov p-I 
o - asin  + v . o l l N I  = -gcos , 

Here vn is the kinematic viscosity that corresponds to the exponent of the model n. 
System (2) should be supplemented by boundary conditions in the form 

(2) 

u = v = O  at the bottom of the layer (y=O) ;  (3) 

p=O, rzv=O, H ,+uHz=v  on the free surface [ v = H ( x , t ) ] -  (4) 

Since the shear stress rzy is proportional to (Ou/Oy)", the equality of this shear stress to zero on the free 
surface is equivalent to the condition Ou/Oy = 0 for Y = H(x, t). 

According to the second equation of system (2), the pressure is hydrostatic: p = pg(H -V) cos a. Hence, 
pz/p = 9H, cos a. Substituting the latter relation into the first equation of system (2) and integrating it with 
the boundary conditions Ou/Oy = 0 for y = H(x, t) and u = 0 for y = 0, we obtain the longitudinal-velocity 
profile 

u = n ( n  + 1 ) - I A I / " B 1 / " ( H  1+1/" - ( H  - V)I+I/"), 
where A = 9 cos a/v,  and B = tan a - Hx. For flow regions with Hz > 0, this analysis is valid for even n 
when Hz < tan a. Near the bottom of the layer (Y = 0) the longitudinal-velocity profile is a linear function 
of the transverse coordinate: u = AI/nBIInHI/"y. Using a continuity equation with the boundary condition 
v = 0 for ? /= 0, we obtain the transverse-velocity profile 

v = (n + 1 ) - IA1/"B1/"{ (B-1HI+I /"H. .  - (n + 1)HI/"Hz)v + n(H 1+1/~ 

- ( 1 t  - v ) I + I / " ) H z  - n ( 2 n  + - ( H  - }.  

If we now substitute the values of the longitudinal- and transverse-velocity components on the free surface 
Iv = H(x,  t)] into the kinematic boundary condition, we obtain the sought equation for the shape of the free 
surface of the granular layer under consideration: 

Ht + A1/"B1/"HX+1/"H~ = (2n + 1)-a Al/"BI/"-l H2+l/"H,z. (5) 

We now convert to dimensionless variables, for which we introduce the length scale L0, thickness scale 
H0, and time scale t0 = (vn/gHo) 1/" (Ho is the undisturbed thickness of the layer). Then Eq. (5) can be 
written as 

Ht + e(cos cr)l/n(tan c~ - ~Hz)I/'~HI+I/nHz = e2(2n + 1)-l(sin O01/n cot o~H2+ll"Hz,.. (6) 

The shape of the free surface changes as a result of nonlinear convective transfer and nonlinear diffusion. 
For the case of small but finite elevations of the free su"rface above the undisturbed level H = 1 + h 

(h << 1), Eq. (6) becomes 

ht + *(sin cx)l/"(1 + (n + 1)n-lh)hz = e2(2n + 1) - l ( s ina)  1/" cot cxhzz. 

This equation can be written in a simpler form if we use a coordinate system moving at a constant velocity 
c = ~(sin ol) 1/r', namely 

ht + ahhz = bhzz, a = ~(sina)l/nn-l(n + 1), b = e2(2n+ 1 ) - l ( s i n a ) l / " c o t a .  (7) 

Equation (7) is a well-known quasilinear Burgers equation that contains quadratic nonlinearity and viscosity 
with a constant coefficient. As b --* 0, the solution of Eq. (7) demonstrates an increase in the slope of the front of 
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disturbances with a discontinuity formed over a finite period of time. When the viscosity is different from zero, 
the increase in the slope of the front is compensated by the smearing effect of diffusion, which is proportional 
to h ~ ,  leading to formation of a shock wave with a constant width A ~ b/U, where U = (a/2)(h-oo + hoo) 
is the wave velocity. 

To analyze the evolution of the Shape of the free surface, we solved Eq. (6) numerically using an 
explicit difference scheme with one-side differences for .convective transfer (for the sake of stability) and 
central differences for diffusion. The scheme 

Ht + F(H)H= = G(H)H==, 

~t 5t 
H~ "+1 = H ~  - -~zF~"(H? - H~m_l) + ~-~z2 G~i (H~+I - 2H~  + H~m_l) 

is monotonous, has an approximation error O(6t,6z), and, hence, exhibits numerical diffusion. At the same 
time, since the problem is one-dimensional, we could take very small steps in t ime and coordinate, so that 
the numerical diffusion is negligibly small. 

The computational domain consisted of four units (x = 0-4). For simplicity, the initial disturbance 
of the free surface was specified in the form of an isosceles triangle of height H1 and width such that the 
aforementioned condition Hx < tan a was valid. 

Figure 1 shows profiles of the free surface of a granular layer (n = 2) at times t = St0, 15t0, and 25t0 
after the initial triangle of height/-/1 = 0.5//0 suddenly became free. The angle between the inclined plane 
and the horizon line is 45 ~ and the ratio of the transverse and longitudinal scales is r = 0.1. It can be seen 
that a compression wave with an almost constant width of the front forms with time. This wave moves at an 
almost constant velocity, calculated from the displacement of the point with a maximum slope of the profile 

I =1. 
The positions and values of the maximum height of the free surface at various times are shown in 

Table 1 for n = 2 and a wave velocity U = 0.11. The wave-front width, which is due to the competition of the 
nonlinearity and diffusion processes, is directly proportional to the diffusivity and inversely proportional to 
the wave amplitude. It is equal to ~0.44 in dimensionless variables and to ,,~4.4H0 in dimensional variables. To 
determine how the flow character depends on the model of the medium, i.e., on n, we conducted calculations 
that corresponded to a viscous Newtonian fluid (n = 1) and a pseudoplastic medium (n = 1/2) with the same 
values of steps in time gt and coordinate 5z, aspect ratio r and initial disturbance amplitude H1. 
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TABLE i 

t/to Hm~, [ x. 

I 

n = 2, U = 0.11 

5 1.36 I 1.44 
I 

15 1.28 ] 2.53 
25 1.24 3.55 

Hltltlax I x. 
n =  1, U=0.095 

1.25 2.35 
1.21 3.26 

Hmax I x, 
n = 1/2, U = 0.08 

1.32 [ 1.31 
1.24 2.09 
1.20 2.78 

Profiles of the free surface are presented in Fig. 1, and the coordinates and maximum heights are listed 
in Table 1 for n = 1 and U = 0.095 and n = 1/2 and U = 0.08. The diffusion coefficient, i.e., the coefficient at 
Hzx, in Eq. (6) is proportional to (sin cr)l/n(2n + 1)-1H 2+~/n. Comparison of the values of these coefficients 
for various values of n shows that  for n = 2 the diffusivity is minimum, and for n = 1/2 it is maximum. 
Thus, for t/to <~ 25 and n = 2 the mutual effects of nonlinearity and diffusion compensate for each other and 
a profile of constant width is formed, while for n = 1/2 the width of the profile is unstable, increasing from 
A = 0.44 for t = 15t0 to A = 0.58 for t = 25t0. 

In conclusion, we note that since the inertial terms were ignored, we studied a quasisteady case. It 
would be of interest to consider the stability of these solutions, for example, in the same manner as was done 
for a Newtonian fluid (see [4, 5] and the papers cited there). 
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